Wildfire prediction using Spatio-Temporal Knowledge Graphs

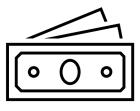
D2R2'2023 28.05.2023

01/06/2023

Agenda

- Introduction
- Use Case overview
 - Data format
 - Data overview
- Knowledge Graph creation
- Data Modeling
- Conclusion

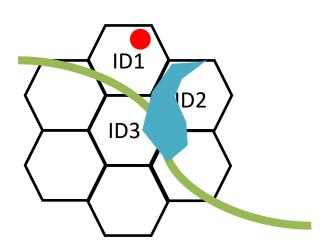
Introduction


US (2021)

58.985 wildfires

California

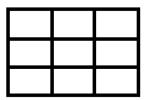
2M house at risk

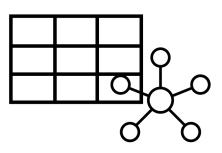


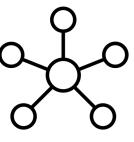
California (2018)

148B \$ economic damage

Current data preparation techniques


Grid Cell ID	hasRiver	hasCampfire	Wildfire
ID1	True	True	False
ID2	False	False	True
ID3	True	False	True


- Use Grid cells as single elements within datasets
- No inclusion of surrounding elements
- Limited data base


Can surrounding elements have a positive influence on wildfire prediction?

Use Case Overview

Base Case

Hybrid Case

Graph Case

Input data

Elevation data

Openstreetmap data

Landcover data

Wildfire area data

Weather data

Incorporating spatial relationships

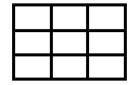
Interconnection of different data types

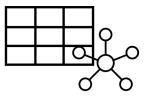
Transform data to spatial knowledge graph

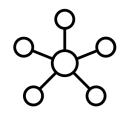
Starting point

- Divide area into regular spaces (called grid)
- Each area is a grid cell
- Possible geometric objects:
 - Triangle
 - Square
 - Hexagons

Data Preparation







Base Cases

Hybrid Cases

Graph Cases

Data Preparation - Weather

- Pointwise measurements of weather variables
- Need to interpolate data over created spatial grid
- Used interpolation technique:

Kriging:

$$\hat{Z}(s_0) = \sum_{i=1}^{N} \lambda_i * Z(s_i)$$

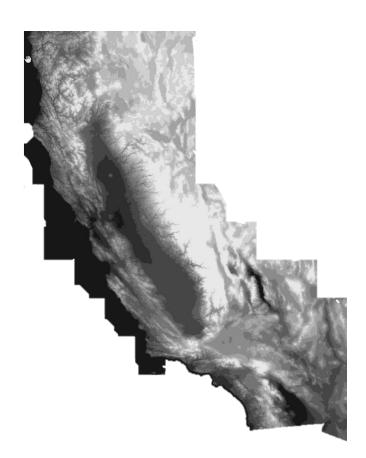
Weight λ_i is determined by a semivariogram

Semivariogram determines spatial autocorrelation and fits function to data

Each constructed grid cell has now interpolated values for weather variables

- λ_i : Weight at i
- $Z(s_i)$: Value at point s_i
- $\hat{Z}(s_0)$: Prediction at point s_0

Data Preparation – Elevation & Landcover data



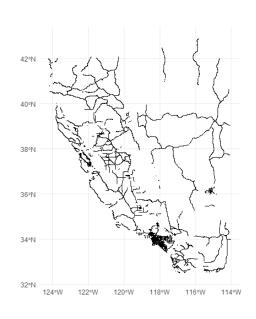
Elevation

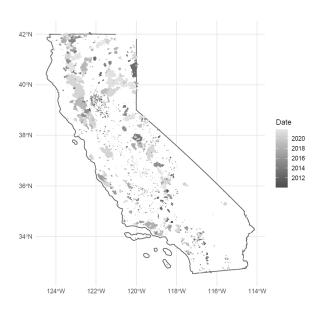
Land cover

Data Preparation – Elevation & Landcover data

- Both datasets fine granular
 - Elevation 60m*60m tiles
 - Landcover 90m*90m tiles
- Elevation numeric dataset
- Landcover categorical dataset
- Elevation dataset gets aggregated with weighted mean to single grid cell
- Landcover dataset gets aggregated with weighted majority vote to single grid cell

Data Preparation – Openstreetmap & Wildfire data





Openstreetmap

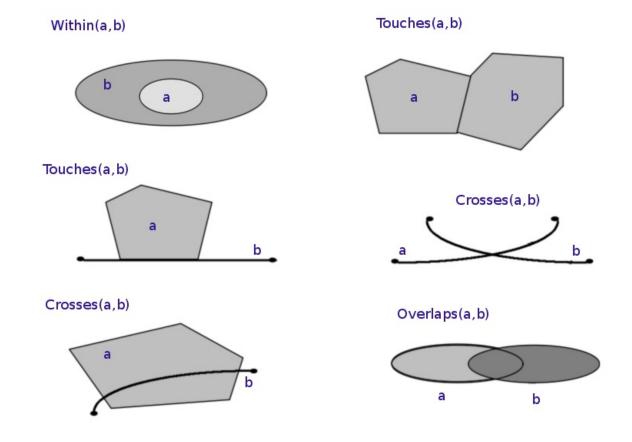
- Extract columns related to potential wildfires
- Extract necessary geometry types
- Join Openstreetmap to Grid Cell based on overlap



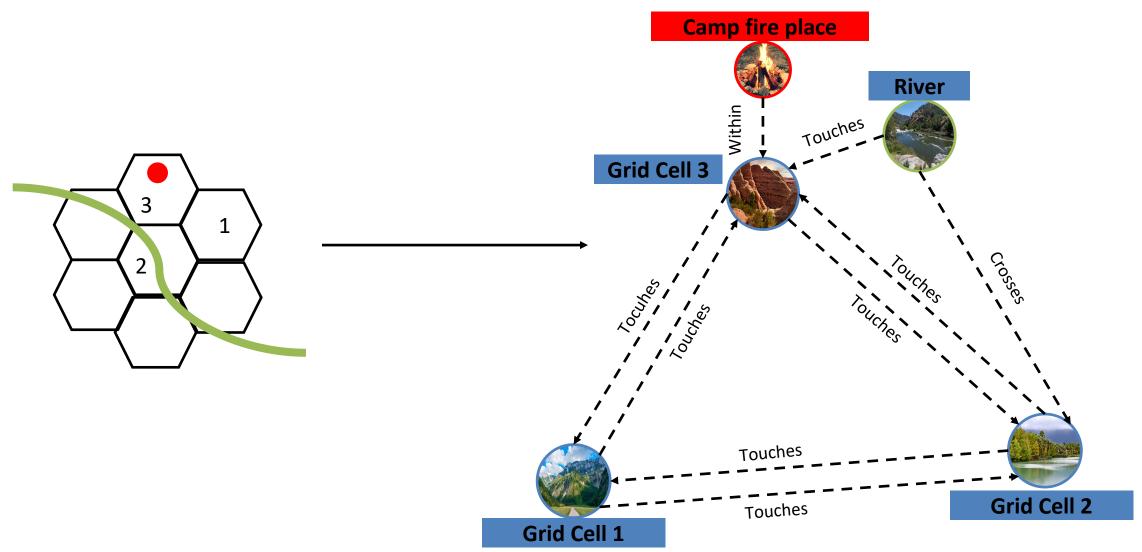
Wildfire

- Transform year and days to date
- Join wildfire to Grid Cell based on relation overlap

Build up spatial knowledge graph



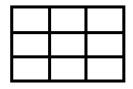
Build up spatial knowledge graph – DE-9IM



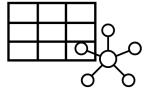
DE-9IM is topological model to build relationships between geometric objects

Transform data to spatial knowledge graph

Wildfire detection – Create Vector representation (RDF2Vec)



- RDF2Vec method transforms graphs to vector representations
- RDF2Vec is separated in two phases
 - Graph traversal phase with Breadth-First Search algorithm
 - Training of Word2Vec model
- Each extracted walk consists of Nodes and the Edge description transformed to sentence
- Resulting vector representation can be combined to dataset


Construct Base Case Dataset

- Consists of tabular data where Grid Cell ID and Month build one row
- No relationship between neighboring grid cells

Base Cases

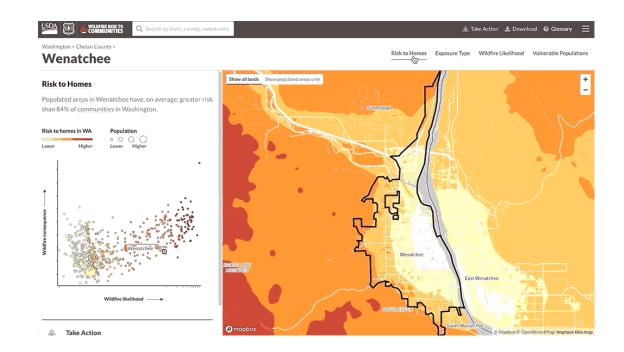
Hybrid Cases

- Consists of tabular data where Grid Cell ID and Month build one row
- Embeddings from OpenStreetMap knowledge graph are joined to dataset
- Neighbor semantics are modeled for single grid cell ID

- Consists of embedding data where Grid Cell ID and Month build one row
- Embeddings from knowledge graph with all are joined

Result overview

Dataset	F1	AUC
BaseCase	0.3478	0.6816
HybridCase	0.3803	0.8748
NetworkCase	0.0107	0.5341


Conclusion and outlook

- Graph based inclusion in dataset improves results for Hybrid Case dataset
- Scenarios can be modelled more accurate due to surrounding factors and semantic relations

Outlook:

- Create more benchmark datasets related to geography
- Compare constructed KG with other spatial
 Knowledge Graph on benchmark dataset
- Embed Knowledge Graphs with different embedding methodologies

Thank you

01/06/2023 21